Chem 11 Equations in LATEX

1 Properties of Solutions

The heat an object gains or loses is proportional to its temperature change.

q = # Moles × Molar heat capacity × ΔT OR $q = Mass × Spefic Heat Capacity × <math>\Delta T$

The heat of fusion and vaporization are heats required or given off during phases changes. $q = \# Moles \times \Delta H_{fusion}$ $q = \# Moles \times \Delta H_{vaporization}$

When calculating heat changes in matter the conservation of energy must be obeyed.

 $\sum q_i = q_{heating solid} + q_{melting solid} + q_{heating liquid} + q_{vaporizing liquid} + q_{heating gas}$

The Clausius-Clayperon equation relates the vapor pressure P_1 of a solvent at temperature T_1 to the vapor pressure of the solvent P_2 at temperature T_2

$$\ln \mathbf{P} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T}\right) \qquad \ln \frac{P_2}{P_1} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \quad \text{where } \mathbf{R} \text{ is } 8.314 \text{ J mol}^{-1} \text{ K}^{-1}.$$

The solubility of a gas in a liquid is equal to the partial pressure of that gas above the liquid times the Henry's Law constant for that gas/solvent combination.

$$S_{gas} = k_{Henry} \times P_{vapor}$$

Raoult's Law: The partial pressure of a vapor over its liquid is equal to the mole fraction of the solvent times the vapor pressure of the pure liquid.

$$\mathbf{P}_v = \chi_{solvent} \mathbf{P}_{solvent}^{\circ}$$

Four colligative properties depend only on the number of solute particles in solution.

Boiling Pt. Elevation	Freezing Pt. Depression	Osmotic Pressure	Vapor Pressure Lowering
$\Delta T_{b} = (T_{b} - T_{b}^{\circ}) = \mathit{i}mK_{b}$	$\Delta T_{f}=-(T_{f}-T_{f}^{\circ})=\textit{im}K_{f}$	$\Pi = i MRT$	$\Delta \mathbf{P}_v = i \chi_{solute} \; \mathbf{P}_{solvent}^{\circ}$

R = 0.0821 L atm mol⁻¹ K⁻¹, m = molalilty, M = molarity, i = Van Hoff't Constant. In the ideal case i = total number of moles of particles: i.e. i =1 for electrolytes, i = 2 for NaCl, i = 3 for CaCl₂ and so on.

Chemistry makes use of many units of concentration.

parts per million = ppm = $\frac{\text{g solute}}{\text{g solution}} \times 10^6 = \frac{\text{g solute}}{\text{mL solution}} \times 10^6 \text{ (when } D_{H2O}\text{: } 1.0 \text{ g/mL}\text{)}$ mass of solution = mass of solvent + mass of solute

Property	Oth Order	1st Order	2nd Order
Rate Law	Rate = k	Rate = $k[A]$	Rate = $k[A]^2$
Integrated Rate Law	$[A]_t = -k \ t + [A]_0$	$ln[A]_t = -k \ t + ln[A]_0$	$\frac{1}{[A]_t} = k \; t + \frac{1}{[A]_0}$
Slope, Y-intercept	-k, [A] ₀	$-k$, $ln[A]_0$	k, $\frac{1}{[A_0]}$
Y vs x Plot	$[A]_t$ vs t	$\ln [A]_t$ vs. t	$rac{1}{[A]_t}$ vs t
Half-Life = $t_{1/2}$	$\frac{[A]_0}{2k}$	$\frac{0.693}{k}$	$\frac{1}{k \ [A]_0}$

2 Kinetics and Integrated Rate Laws (A \leftrightarrow C)

The Arrhenius equation relates the rate constant to the activation energy, \mathbf{E}_a at temperature T. $\mathbf{k} = \mathbf{A} \ \mathbf{e}^{-E_a/RT}$ $\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ $\mathbf{R} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}.$

3 Equilibrium

The law of mass action exclude solids and pure liquids from the equilibrium expression.

$$aA + bB \longrightarrow cC + dD$$
 $K_c = \frac{[C]^c[D]^d}{[B]^b[A]^a}$ $K_p = \frac{(P_C)^c(P_D)^d}{(P_B)^b(P_A)^a}$

 \mathbf{K}_c and \mathbf{K}_p are related.

 $K_c = K_p (RT)^{-\Delta n} (\Delta n = \# \text{ mol of products} - \# \text{ mol of reactants})$ $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$

ICE equiibrium problems simplify when $K_a \times 100 < [HA]$ or when $K_b \times 100 < [B]$. The quadratic equation must be used when simplications can not be made.

$$ax^{2} + bx + c = 0$$
 $\mathbf{x} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

The van't Hoff equation relates the equilibrium constant, K_1 at T_1 to the equilibrium constant for the same reaction K_2 at T_2 .

$$\ln \frac{K_2}{K_1} = \frac{-\Delta H_{rxn}^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \quad \mathbf{R} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, \text{ T in Kelvin } (\Delta \text{H must be known}).$$

4 Acids and Bases

 \mathbf{K}_a (\mathbf{K}_b) is the equilibrium constant for acids (bases).

$$HA + H_2O \longleftrightarrow H_3O^+ + A^- \qquad K_a = \frac{[H^+][A^-]}{[HA]}$$
$$B + H_2O \longleftrightarrow BH^+ + OH^- \qquad K_b = \frac{[OH^-][BH^+]}{[B]}$$

The Ion-Product of Water is a constant for all aqueous system at 25°C.

 $K_w = 1.0 \times 10^{-14} = [H^+] [OH^-]$ and the log form of the same: pH + pOH = 14

pH and pOH are logarithmic measures of [H⁺] and [OH⁻] concentration.

 $pH = -\log [H^+]$ $pOH = -\log [OH^-]$ pH + pOH = 14

Acid-Conjugate Base Dissociation Constants Are Related through the Ion-Product of Water.

 $\mathbf{K}_a \times \mathbf{K}_b = \mathbf{K}_w = 1.0 \times 10^{-14} \quad \text{or} \quad \mathbf{p}\mathbf{K}_a + \mathbf{p}\mathbf{K}_b = 14.$

% Ionization of An Acid or a Base Is Found from equilibrium pH data.

% Ionization =
$$\frac{[\mathrm{H}^+]_{eq}}{[\mathrm{HI}]_{initial}} \times 100$$
 % Ionization = $\frac{[\mathrm{OH}^-]_{eq}}{[\mathrm{B}]_{initial}} \times 100$

The Henderson-Hasslebalch Equation is used to produce buffers.

$$\begin{split} HA + H_2O &\longleftrightarrow H_3O^+ + A^- & B + H_2O &\longleftrightarrow BH^+ + OH^- \\ pH = pK_a + \log \frac{[A^-]_{init}}{[HA]_{init}} & pOH = pK_b + \log \frac{[BH^+]_{init}}{[B]_{init}} \end{split}$$

 \mathbf{K}_{sp} is the equilibrium constant that characterizes the equilibrium between a barely soluble salt and its saturated solution

$$Ca(OH)_2(s) \longleftrightarrow Ca^{2+}(aq) + 2OH^{-}(aq) \quad K_{sp} = [Ca^{2+}] [OH^{-}]^2$$

5 Thermodynamics

2nd Law of Thermo: the entropy of the universe increases in spontaneous processes.

 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$ equivalent statement is $\Delta G_{rxn}^{\circ} < 0$ The standard Gibb's Free Energy, ΔG_{rxn}° is used to predict the spontaneity of a reaction.

 $\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T\Delta S_{rxn}^{\circ}$ (T in Kelvin, S and H have the same units of energy).

At standard-state conditions, Hess's Law can be used to calculate thermodynamic quantities.

$$S_{rxn}^{\circ} = \sum n_i S_{if}^{\circ} (\text{products}) - \sum m_j S_{jf}^{\circ} (\text{reactants})$$

$$\Delta H_{rxn}^{\circ} = \sum n_i \Delta H_{if}^{\circ} (\text{products}) - \sum m_j \Delta H_{jf}^{\circ} (\text{reactants})$$

$$\Delta G_{rxn}^{\circ} = \sum n_i \Delta G_{if}^{\circ} (\text{products}) - \sum m_j \Delta G_{jf}^{\circ} (\text{reactants})$$

$$\Delta G_{rxn}^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} - (T \text{ in Kelvin S and H some with } S)$$

 $\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T\Delta S_{rxn}^{\circ}$ (T in Kelvin, S and H same units of energy.)

 $\Delta \mathbf{G}_{rxn}$, can be calculated for reactions under non-standard state conditions.

 $\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln Q \qquad (R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \text{ and T in Kelvin, Q is reaction quotient)}$ At equilibrium: $\Delta G = 0 \& \Delta G_{rnx}^{\circ}$ is linked to K of a chemical reaction.

$$\Delta G_{rxn}^{\circ} = -RT \ln K \qquad K = \exp\left(\frac{-\Delta G_{rxn}^{\circ}}{RT}\right) \quad (R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \text{ and T in Kelvin})$$

The cross-over temperature with which a spontaneous may be forced to occur can be calculated.

$$T > \frac{\Delta H_{rxn}^{\circ}}{\Delta S_{rxn}^{\circ}}$$
(units of energy must match)