Chapter 16:

Chemical Kinetics

16.1 Factors that influence reaction rates
16.2 Expressing the reaction rate

Exam 1: Page:

 673-67916.3 The rate law and its components
16.4 Integrated rate laws: Concentration changes over time
16.5 Reaction mechanisms: Steps in the overall reaction
16.6 Catalysis: Speeding up a chemical reaction

Exam 1 Tonight: 6:00PM-7:30PM Berchman Hall

Pen and Calculator and toolbox is all you need!

Ch 11 F - B102-Nestor
Ch $11 \mathrm{E}-\mathrm{B} 03$-JP
Ch 11 D-B104 - Aran
Ch 11B - B105-Dr Gross
Ch 11C - B106 - Dr. Gross and Michelle

Different theories tell us different things.

Thermodynamic theory gives us information on the energetics of a reaction, and whether a chemical reaction can occur, but it has no information on how fast a reaction can occur (which kinetic theory tells us).

Kinetic theory provides information on how fast or slow a chemical reaction is but it can not tell us the energetics or how far a reaction will go (the extent)

Equilibrium theory tells us to what extent a chemical reaction occurs but not on how fast it will occur.

Five factors affect the rate of a chemical reaction.

1. Nature of Reactants--bonds break and form during a reaction. Element and compounds have "inherent tendencies to react".
2. Concentration - molecules must collide to react; the more molecules there are---the faster the reaction.
3. State or Phase of reacting molecules must mix to collide, gas, liquids and solids have different surface area to volume ratios varying reactivity.
4. Temperature - molecules must collide with a minimum energy in order to react. Higher temperatures mean higher KE during a collision.
5. Presence of a catalyst: catalyst increase reaction rates without being consumed in the reaction itself.

A hot steel nail glows in O_{2} but the same mass of steel wool bursts into flames.

The greater the surface area per unit volume means more metal atoms can react with O_{2} and increases the reaction rate.

A chemical reaction rate is the change in the concentration (molarity) of a reactant or a product with time. By convention, the reaction rate it is always a positive number. $\quad \mathrm{A} \longrightarrow \mathrm{B}$

$$
\text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}
$$

$\Delta[A]=[A]_{t}-[A]_{t=0}=$ change in concentration of [A] over a period of time $\Delta t=t-t_{0}$
Because [A] is a reactant it decreases with time therefore $\Delta[A]$ is a negative value so we place a minus sign in the expression!

$$
\begin{array}{ll}
\text { rate }=\frac{\Delta[\mathrm{B}]}{\Delta t} & \begin{array}{l}
\Delta[\mathrm{B}]=\text { change in concentration } \\
\text { of } \mathrm{B} \text { over time period } \Delta t
\end{array}
\end{array}
$$

Because $[B]$ is a product it increases with time: $\Delta[B]$ is a positive value and so does the rate!

To avoid the ambiguity in a reaction rate, we use a "scaled or unified rate" such that one number describes the rate of change of all reactants and all products.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})===3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\text { rate }=-\frac{\Delta\left[\mathrm{C}_{3} \mathrm{H}_{8}\right]}{\int_{\Delta t}^{\Delta t}}=-\frac{1}{(5)} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1 \Delta\left[\mathrm{CO}_{2}\right]}{(3) \Delta t}=\frac{1}{(4)} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}
$$

notice the - sign for the reactants!
Rate >0 (it's a positive number)!

A balanced chemical equation relates the rates of disappearance of reactants to the rate of appearance of products.

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})===>3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

For every $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{M})$ per unit time requires $5 \mathrm{~mol} \mathrm{O}_{2}$ per unit time For every $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{M})$ per unit time produces $3 \mathrm{~mol} \mathrm{CO}_{2}$ per unit time For every $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}(M)$ per unit time produces $4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ per unit time

$$
\text { rate }=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=-5 \frac{\Delta\left[\mathrm{C}_{3} \mathrm{H}_{8}\right]}{\Delta t}=5 / 3 \frac{\Delta\left[\mathrm{CO}_{2}\right]}{\Delta t} \begin{aligned}
& \text { this is confusing } \\
& \text { so we avoid it! }
\end{aligned}
$$

We use a "unified rate" such that the stoichiometry is considered and a single positive value rate of reaction can be written.

$$
\text { rate }=-\frac{\Delta\left[\mathrm{C}_{3} \mathrm{H}_{8}\right]}{\Delta t}=-\frac{1}{5} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{3} \frac{\Delta\left[\mathrm{CO}_{2}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}
$$

Analogy With Sandwich Equation

2 bread slices +3 sardines +1 pickle $\longrightarrow 1$ sandwich Suppose 4 sandwiches can be made per minute. What is the rate of change of the other ingredients?
rate $=\frac{\Delta \text { sandwich }}{\Delta t}=-\frac{1}{2} \frac{\Delta \text { bread }}{\Delta t}=-\frac{1}{3} \frac{\Delta \text { sardines }}{\Delta t}$
rate $=\frac{\Delta \text { sardine }}{\Delta t}=-\frac{1}{2} \frac{\Delta \text { bread }}{\Delta t}=-\frac{1}{3} \frac{\Delta \text { sardines }}{\Delta t}$
rate $=\frac{\Delta \text { bread }}{\Delta t}=-\frac{1}{2} \frac{\Delta \text { bread }}{\Delta t}=-\frac{1}{3} \frac{\Delta \text { sardines }}{\Delta t}$

Suppose you are given the following generalized reaction.

$$
\mathrm{aA}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

What is the rate of reaction written as a function of change in [A], [B], [C] and [D]?

$$
\text { rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}
$$

Suppose the rate of appearance of NO_{2} is measured and Q found to be 2 Molar sec ${ }^{-1}$. What is the rate of disappearance, $\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ and the rate of formation of O_{2} ? Ω
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=2 \mathrm{M} \mathrm{s}^{-1}$
Method $1-\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{2 \mathrm{M} \mathrm{NO}_{2}}{\sec } \times \frac{2 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{5}}{4 \mathrm{M} \mathrm{NO}_{2}}=\frac{1 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{5}}{\sec }$

Method $2-\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{1}{1} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}$

$$
-\frac{1}{4} \frac{2 \mathrm{M} \mathrm{NO}_{2}}{\mathrm{sec}}=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{1}{1} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}
$$

Hydrogen gas is used for fuel aboard the space shuttle and may be used by automobile engines in the near future.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

(a) Express the reaction rate in terms of changes in $\left[\mathrm{H}_{2}\right]$,
[O_{2}], and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ with time.
(b) If $\left[\mathrm{O}_{2}\right]$ decreases at $0.23 \mathrm{~mol} \mathrm{O} / \mathrm{L} / \mathrm{s}$, at what rate is [$\mathrm{H}_{2} \mathrm{O}$] increasing?
(a) rate $=-\frac{1}{2} \frac{\Delta\left[H_{2}\right]}{\Delta t}=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=+\frac{1}{2} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}$
(b) $-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=0.23 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=+\frac{1}{2} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}$

$$
\frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}=0.46 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}
$$

The "rate" of a phenomenon is the ratio of how some quantity changes with respect to time.

Suppose we have drive to Alabang starting from White Plains

$\mathbf{t}=\mathbf{0}$	$\mathbf{1 5} \mathbf{~ m i n}$	$\mathbf{2 0} \mathbf{~ m i n}$	$\mathbf{5 0} \mathbf{~ m i n}$
	1	1	1
0 km	25 km	30 km	60 km
Edsa White	Sucat	Alabang	Canlubang

Avg Rate of Speed $_{\text {Alabang }}=\frac{\text { Position }_{\text {Alabang }}-\text { Position }_{\text {Edsa }}}{\text { Time }_{\text {Alabang }}-\text { Time }_{\text {Edsa }}}$

Avg Rate of Speed $_{\text {Alabang }}=\frac{\Delta d}{\Delta t}=\frac{30 \mathrm{~km}}{20 \min }=\frac{1.5 \mathrm{~km}}{\min }$

We can measure our distance from a point on Edsa by looking at the odometer of the car and noting the distance \& time from the starting point.
rate of speed $=\frac{\Delta \text { Distance }}{\Delta \text { time }}=\frac{\Delta \mathrm{D}}{\Delta \mathrm{t}}=\frac{\mathrm{D}_{\mathrm{i}}-\mathrm{D}_{0}}{\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{0}}$

Place	Time $(\mathbf{m i n})$	Distance Traveled $(\mathbf{k m})$	Rate of Speed $(\mathbf{k m} / \mathbf{m i n})$	
Edsa	0	0	0	All speeds are
Sucat	20	25	$1.25 \mathrm{~km} / \mathrm{min}$	relative to starting point but need not be
Alabang	40	30	$0.75 \mathrm{~km} / \mathrm{min}$	$1.0 \mathrm{~km} / \mathrm{min}$
Canalubang	60	60		

In chemical reactions we can observe the rate of disappearance of a reactant, or the appearance of a product: Consider a transformation: $A==>B$

An Example: Reduction of Bromine to Bromide

$$
\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)
$$

We can easily monitor the change in [Br_{2}] with an lab instrument.

Suppose we monitor the color change and we plot the reaction data:
$\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)$

Time (s)	$\left[\mathrm{Br}_{2}\right](\mathrm{mM})$
0.0	12.0 mM
50.0	10.0 mM
100.0	8.46 mM
150.0	7.10 mM
200.0	5.96 mM
250.0	5.00 mM
300.0	4.20 mM
350.0	3.55 mM
400.0	2.96 mM

$$
\begin{aligned}
& \text { average rate of } \\
& \text { disappearance }
\end{aligned}=-\frac{\Delta\left[\mathrm{Br}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{Br}_{2}\right]_{\text {final }}-\left[\mathrm{Br}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}
$$

Time (s)	$\left[\mathrm{Br}_{2}\right](\mathrm{mM})$	$\Delta\left[\mathrm{Br}_{2}\right]$	Avg Rate	
0.0	12.0 mM	2.00	0.04	Just like driving
50.0	10.0 mM	1.5	0.031	in a car and
100.0	8.46 mM	1.36	0.027	sometimes
150.0	7.10 mM		0.023	slow, then fast
200.0	5.96 mM			again---the
250.0	5.00 mM			average rate o chemical
300.0	4.20 mM	0.80	0.016	reaction also
350.0	3.55 mM	0.65	0.013	varies over time!
400.0	2.96 mM	0.59	0.01	

The average rate of disappearance of Br_{2} is the slope of the line between any two points on the curve. We can pick any two points and get and average rate.

The instantaneous rate of disappearance of $B r_{2}$ is the slope of the line tangent at any point along the curve.

Instantaneous Rate of Change

